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A comparison between the �- and �-facial selectivity observed in the hydroboration of some androst-5-enes and

B-norandrost-5-enes does not parallel the difference between the calculated force field energies for �- and �-cyclo-

butane models suggesting that the facial selectivity is not determined by the four-centre transition state but by the

relative ease of formation of the initial �-complex between the alkene and the borane.

The initial stage in the hydroboration of an alkene involves
the formation of a p-complex between the alkene and
the borane which rearranges in the second stage to the
four-centre transition state that leads to the intermediate
borane.1 Oxidation of the borane with alkaline hydrogen
peroxide then a�ords the alcohol. Calculations on the
®rst two stages2±4 have shown that the formation of the
four-membered transition state5 is the rate determining
step for the hydroboration. A cyclobutane ring may a�ord
an approximate model for the four-centre transition
state.6 Di�erences between the calculated force ®eld energies
of the a- and b-oriented four-membered ring adducts
derived from androst-5-ene, 1 and 2, on the one hand, and
B-norandrost-5-ene, 3 and 4, on the other, suggest that the
a-oriented four-membered transition state for hydroboration
is more stable for the 6 :6 fused A/B ring system whilst the
b-oriented system is more stable for the 6 :5 fused A/B ring
system paralleling the known order of stability of cis and
trans fused 6 :6 and 6 :5 ring systems.8

Prior work on the hydroboration of cholest-5-enes9,10 has
shown that the predominant direction of attack was from

the a-face to a�ord 5a-cholestan-6a-ols. The results of the
hydroboration and oxidation of a series of androst-5-ene
and B-norandrost-5-enes, 5±9, are given in Table 1. The
stereochemistry of the products was established by their 1H
NMR spectra.15

Except for 7, the major products of hydroboration
of both the six-membered and B-norsteroids arise from
reaction on the a-face of the molecule. This suggests that
the formation of the four-membered transition state is
not determining the facial selectivity and consequently
we suggest that the facial selectivity may be determined
by the relative ease of formation on the initial p-complex
on each face. This interpretation of these results could
also accommodate the observed in¯uence of an allylic
hydroxy group on the facial selectivity which, in other
studies,17 has been shown to direct the borane to the trans
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Table 1 Hydroboration of steroidal D5-enes

Substrate Product Yield (%)

3b-Acetoxyandrost-5-ene 5 3b-acetoxy-5a-androstane 10 1.2
3b-acetoxy-6b-hydroxy-5a-androstane 13 1.0
3b-acetoxy-6a-hydroxy-5a-androstane 16 4.9
3b-hydroxy-5a-androstane 11 2.3
3b,5a-dihydroxyandrostane 20 1.1
3b,6b-dihydroxy-5a-androstane 14 1.9
3b,6a-dihydroxy-5a-androstane 17 68.2

Androst-5-en-17-one 6 17b-hydroxy-5a-androstane 12 3.0
6b,17b-dihydroxy-5a-androstane 15 5.0
6b,17b-dihydroxy-5b-androstane 21 11.0
6a,17b-dihydroxy-5a-androstane 18 44.0

3a-Hydroxyandrost-5-en-17-one 7 3a,6b,17b-trihydroxy-5b-androstane 22 64.0
3a,6a,17b-trihydroxy-5a-androstane 19 7.5

3b-Acetoxy-B-norandrost-5-ene 8 3b-acetoxy-6a-hydroxy-B-nor-5a-androstane 23 34.4
3b,6a-dihydroxy-B-nor-5a-androstane 24 49.7

3a-Hydroxy-B-norandrost-5-en-17-one 9 3a,6a,17b-trihydroxy-B-nor-5a-androstane 25 71.0

face. A repulsive interaction between the oxygen lone pairs
and the p-system would enhance the p-electron density on
the trans face. The regiochemistry of the hydroboration
would however be in¯uenced by the relative energies of
the orbitals involved in the conversion of the p-complex
to the four-membered transition state. In particular the
interaction between the oxygen lone pairs of the allylic
alcohol and the p-complex as it rearranged to the four-
membered transition state would favour the addition of
the electron-de®cient boron to the adjacent, rather than the
distant, carbon. This e�ect on the electron density might
be counter-balanced by the substitution pattern of the
alkene.
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